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We present an algorithm for microscopic modeling of superconducting states of arbitrary pairing symmetry
via an implementation of self-consistent perturbation theory, the fluctuation exchange approximation (FLEX),
applied to Hubbard-like models. Like the original formulation of FLEX, all ring diagrams that are generated
with the bare interaction vertex are included in the generating functional for the self-energy. Thus, this algo-
rithm is suitable for FLEX-based Hubbard model calculations in both the attractive and repulsive cases.
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I. INTRODUCTION

Since the emergence of Bardeen, Cooper, and Schrieffer’s
microscopic theory of superconductivity, analytic, and nu-
merical modeling of electron pairing has played a central
role in analysis of the processes by which superconductivity
emerges in a wide variety of materials. While quantitative
accuracy has been attained in the calculation of properties
such as the superconducting transition temperature, 7, for
some materials, such as lead and aluminum, the lack of com-
parable success in modeling superconductors with strong
electron correlations, such as the cuprates, leaves room for
doubt as to the essential underlying physical processes re-
sponsible for superconductivity in those materials. However,
theoretical arguments support the idea that, at least in prin-
ciple, electron correlations can provide the pairing mecha-
nism in addition to strongly renormalizing the normal state.
Experiments as well as theoretical work have found that
these strongly correlated superconductors are good candi-
dates for having unconventional pairing states, i.e., where the
spatial part of the wave function describing relative orienta-
tion of electron pairs is not of even symmetry with respect to
the point-symmetry operations of the underlying lattice.!

For superconductors with strong correlations, a significant
theoretical effort has focused on Hubbard-like Hamiltonians
where the interactions between electrons are modeled with
an effective repulsive or attractive atomic-ranged
interaction,? an effort that was originally spurred by Ander-
son’s hypothesis that the two-dimensional repulsive single-
band Hubbard model provides a basic model for low-energy
electronic properties in the cuprates.> The methods employed
for this theoretical effort necessarily include some type of
approximation that emphasizes a certain physical limit of the
underlying, unsolved Hamiltonian.

The fluctuation exchange approximation (FLEX) devel-
oped by Bickers, Scalapino, and White* has attracted signifi-
cant interest for model studies of the cuprates and other su-
perconducting materials with strong correlations. As FLEX
is based on self-consistent perturbation theory it is presum-
ably most accurate in the limit of weak to moderate electron
correlations. While the one-particle FLEX equations are de-
rived systematically from a set of perturbation-theory dia-
grams for an underlying Hamiltonian, the equations pro-
duced nonetheless resemble those found in many spin-
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fluctuation  models ~ where  the  emergence  of
superconductivity is presumed to be driven by magnetic cor-
relations. Consequently, it is not surprising that an unconven-
tional, d-wave pairing state, is obtained using the FLEX
treatment of the two-dimensional single-band Hubbard
model near half filling,>® as the same is observed in spin-
fluctuation models with strong antiferromagnetic correlations
and a similar band structure.” To the extent that spin fluctua-
tions accurately describe the pairing mechanism in certain
strongly correlated materials, the FLEX approximation ap-
plied to Hubbard-like models provides a viable modeling
tool for these materials.

While the repulsive Hubbard model may provide a mini-
mal model for the emergence of superconductivity in some
strongly correlated systems, the attractive Hubbard model
provides a conceptually simple model for superconductors
with conventional pairing. In this case, an attractive electron
interaction appears explicitly rather than emerging from a
complex many-body process as must occur for superconduc-
tivity to emerge from a repulsive bare interaction. An advan-
tageous feature of the attractive Hubbard model is its ame-
nability to analysis via highly accurate quantum Monte Carlo
techniques—accurate calculations for the two-dimensional at-
tractive Hubbard model span over two decades.® It is indeed
interesting that the Hubbard model may provide a tool for
modeling both conventional and unconventional supercon-
ductors. Consequently, it is potentially useful for analysis
schemes for the Hubbard model to work in both limits.

In this manuscript we present an algorithm for analysis of
superconducting states with off-diagonal long-range order
that is based on the application of FLEX to Hubbard-like
models. To be clear, our interest here is in describing prop-
erties of systems below the transition temperature, 7., where
long-range off-diagonal order appears and thus go beyond
Eliashberg-like schemes based on FLEX that aim to deter-
mine the dominant pairing symmetries and 7. through analy-
sis of correlations in the normal state. The main features of
our scheme are as follows. First, we incorporate s-wave
particle-pair fluctuation terms; these are often neglected for
the repulsive Hubbard model, leading to errors of up to 20%
in the value of TC,5 but these terms are essential for the at-
tractive Hubbard model and may play a role in determining
the dominant pairing symmetry when one or more pairing
state is favorable as may be the case with the pnictide
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superconductors.”!? Second, we expand the pairing space to
include triplet pairing, as may be observed in SrRuO, (Ref.
11) as well as mixed single-triplet pairing for lattices without
inversion symmetry, like CePt;Si,'> or for systems with
translational or magnetic disorder. Along with the generali-
zations necessary for nonsinglet pairing, the algorithm incor-
porates spin polarizations of arbitrary direction which is po-
tentially useful for analyzing the competition and/or
interdependence of competing magnetic and superconducting
phases.

An important disadvantage of any FLEX-based calcula-
tion scheme is that FLEX is known to produce incorrect
results in some limits. For example, d-wave pair fluctuations
are not included in the approximation for the repulsive
single-band Hubbard model so that a conventional broken
symmetry state is produced at finite temperature in two
dimensions,>® a result that is in contradiction to general prin-
ciples for two-dimensional phase transitions.'>'* Also, the
expected 7=0 antiferromagnetically ordered state in two di-
mensions for the half-filled Hubbard model does not appear
as expected.!® These difficulties have been addressed in a
variety of ways that may be well motivated on physical
grounds, for instance by incorporating higher-order terms
that are outside of the standard FLEX approximation, such as
was done recently by Yan.'® However, the many studies that
have been performed using approximations based on FLEX
have only added to the need for a clear presentation of a
scheme for generalizing the FLEX approximation, as origi-
nally formulated, to states with long-range off-diagonal order
and to the results that such a scheme produces.

II. ALGORITHM

For simplicity, we focus on a single-band Hubbard model,
given by

H-uN=- 2, t(r- r')cl cro+hec. - w> cl Cro

(rrx'),o r.o
— > h-Gypclcrg + U CITCrTCrTiCri' (1)
r,o,0’ r

where #(r—r’) describes the hopping between a pair of
atomic sites at r and r’, U is the on-site interaction amplitude
between up and down spin electrons and h is the external
magnetic field which we will assume here to be uniform
through the lattice. We also include a pairing field term given
by

1 © e e
Hp = 5 2 hp(\Poo"(r’r,)CroCr’O" + \I,(m"(r’r )CI'("IC:"T)'

rr’ oo’
(2)

By monitoring the response of the system to a pairing field
with a certain spatial and spin dependence given by
¥, (7,7") we can determine the superconducting correla-
tions in that channel. In practice, we typically start with an
exchange antisymmetric, but otherwise random form for ¥
and self-consistently determine the most dominant terms for
W. We note that such a static pairing field will not project
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states with odd-frequency pairing and, thus, such a procedure
must be generalized to assess the relative stability of such
states.!” The external pairing field strength, h,, governs the
overall amplitude of the pairing field and can be reduced to
zero to determine if a state with off-diagonal long-range or-
der persists in the absence of such a field. To simplify the
discussion, we will focus on a transitionally invariant super-
conducting states with zero-total momentum pairing chan-
nels such that W,/ (F,7')= ¢ . (r—r'), although more gen-
eral forms can be incorporated into this scheme. On each
iteration we update ¢ according to

<CI’0”CI(T>=mp¢U'a"(r’r’)~ (3)

where ¢ is required to be normalized,

2 |ber(AD)P=1, (4)

Ar,0,0’

and the magnitude of m, in Eq. (3) then provides a single
number to characterize the strength of superconducting cor-
relations in the system. Indeed m, and h, are analagous to
the magnetization, m,, and magnetic field, ., for a ferromag-
netic transition.

After converting to momentum space, the noninteracting
part of the Hamiltonian is then

H(O) - lu‘Nz E g(k)clto'cka' - E h- &o'tr’cl'ia'cka"
k,o

koo’

h .
- _ZB E (¢o’o”(_ k)ckoc—kt)" + (:bu-fu—(k)ckg—cjku-r)

k,o,0’
(5)

where &(k)=e(k)—u and e(k) is the spatial Fourier trans-
form of the hopping amplitude, —#(r—r’) and ¢, (k) is the
same for the internal pair-wave function, ¢,,(r).

We employ a Nambu representation to facilitate calcula-
tions in states with off-diagonal long-range order. In this rep-
resentation we have a set of four annihilation operators

{tos Y1 s st = {CkT,CklaCikT,cikl} (6)

and likewise for creation operators. With the doubling of
operator space, anomalous terms that appear with off-
diagonal long-range order can be represented as a regular
contraction of an annihilation and creation operator, i.e.,
(cxrek l)E((//koz,/fle}. With this expansion of operator space,
a physical process—such as the movement of an electron
between sites—can be represented in more than one way and
it will be important to ensure that these alternative represen-
tations of the same physical process are not overcounted
when implementing an approximation such as FLEX.
The single-particle Green’s function is defined as

G oo (1K) = = TAthea DL 1) )

A matrix form for the noninteracting Green’s function, GO,
is derived in the following manner. First, we use the standard
result that
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&¢;j.(7) = (H = uN) hea(7) = o D) (H = uN) (8)

=[(H - uN), o 7] (9)

and perform the commutator algebra using the non-
interacting part of the Hamiltonian to obtain a four-by-four
set of linear equations for each k point, i.e.,

&(k) —h,

Ao <| M

The definition of the Green’s function can be used to show
that this set of equations also describes the time evolution of
G9(7,K). This result is combined with the Fourier transform
equation that produces the frequency domain representation
of the Green’s function, i.e.,

G(e, k) = fﬁ d7e”n"G(1,K), (12)
0
which after integration by parts yields
G(e,k) = i(G(TH 0~,k) - G(7— 0%,k))
—J—Jﬁdm“ﬂ&G“ﬂd. (13)
ig,Jg aT

Upon substitution of the result from Eq. (10) into Eq. (13) as
well as recognizing that G(7— 07,k)—G(7— 0*,K) is equal
to the identity matrix, a solution for the noninteracting
Green’s function is obtained having the form

G Ve, k) =[ie, - HO W], (14)
Interactions are incorporated into the Green’s function via
Dyson’s equation and the self-energy, 3,

Gle,k) =[(GV(e, k)" = 2 (e, k)] (15)

In a phi-derivable conserving approximation such as FLEX,
the self-energy is derived through a functional derivative,

ob
S=—, 16

5 (16)
where the generating functional, ®, is approximated in terms
of the Green’s function and the bare interaction vertex. The
symmetrized bare interaction vertex,!8 F(O), which is defined
via

= h+ih,
v Ek)+h,
hydi1(=K) h,d(-k) —&-Kk)+h,
hydy)(=K)  h,¢) (k)
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Ihol?) =
e = HY0) () (10)
where
hyb (=) hydby (= k)
hpd’}(_ k) hp‘ﬁfi(_ k) (11)
hy+ih,
h,—ih, —&-Kk)-h,
I
H;,= UE CITCrTCILCrL
1 .
= (0) T
- 41 2 Falaz;a3a4l//a] ¢a2¢a4¢a37 (17)

CTL,a,0),03,0y

has 4*=256 possible index combinations of which only 24
have the nonzero values of +U or —U. The indices
of the nonzero terms and their associated signs are

(01;01)=+, (01;10)=-, (03;03)=-, (03;30)=+,
(02;13)=+, (02;31)=-, (10;10)=+, (10;01)=-,
(12;12)=-, (12;21)=+, (13;02)=+, (13;20)=-,
(23;23)=+, (23;32)=-, (21;21)=-, (21;12)=+,
(20;31)=+, (20;13)=-, (32;32)=+, (32;23)=-,

(30;30)=—, (30;03)=+, (31;20)=+, and (31;02)=—. A
graphical representation of this vertex function is given on
the right of Fig. 1. In subsequent analysis, it will be conve-
nient to have a representation for the bare vertex in terms of
incoming and outgoing particle-hole pairs states rather than
the representation of the vertex in terms of incoming and
outgoing particle-particle pairs. Such a vertex, which will
call I'OP" s represented on the left side of Fig. 1. The rela-
tionship between the bare vertices in these two representa-
tions is given by

(0)ph

ajaziaa;

=1

ajayiazay,”

(18)

We will treat TOP" as a 16X 16 matrix, effectively combin-
ing the first two indices into a single index for the outgoing

A
N

o O
T (O)ph o

FIG. 1. Bare vertex function in the particle-hole representation,

Fiﬂ)f;};;awz and particle-particle representation F(aol)’az;a}%.
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FIG. 2. Diagrammatic representation of third and fourth order
particle-hole ring diagram contributions to @, the generating func-
tional for the self-energy, 3.

particle-hole configuration and the last two indices combin-
ing into a single index for the incoming particle-hole con-
figuration.

In FLEX, contributions to ® that are of second- and
higher-order in terms of the interaction strength, U, are ap-
proximated through a set of ring diagrams. Particle-hole ring
diagrams are represented diagrammatically in Fig. 2. In the
original formulation of FLEX for the normal state, a set of
particle-particle ring diagrams are added to the particle-hole
diagrams to complete the graphical representation for the
second- and higher-order terms. However, if all possible
particle-hole diagrams within the expanded basis are in-
cluded and the fully symmetrized bare vertex is properly
defined, then the particle-particle ring diagrams in the formu-
lation of FLEX for the normal state are already taken into
account and, thus, this formalism restores this class of dia-
grams that are often neglected while using FLEX to model
spin-fluctuation induced superconductivity via the repulsive
Hubbard model. The penalty that is paid is that calculations
involving the particle-hole terms have a large number of el-
ements, owing to the larger number of initial and final
particle-hole configurations in the expanded basis.

While evaluation of ® itself is needed to obtain results for
various thermodynamic quantities such as the entropy, we
will limit ourselves to providing the necessary expressions
for calculating the self-energy which is the most computa-
tionally intensive part of the iterative FLEX equations. After
an expression for @ is constructed according to diagram-
matic rules, including symmetry factors that are needed be-
cause of the use of our expanded basis, and taking the func-
tional derivative to obtain the electron self-energy, we obtain

ST == D G (D) T aqpra(r0) (19)

@y

where the particle-hole #-matrix, T, is given in frequency and
momentum space by

T(w”’q) = @ + [)A(‘(wn’q)]z[l_ )?(q’wn)]_l I‘(O)ph
(20)
with
X(7.r)=- %T(O)"hx(f,r) (21)
and
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Xalaz;a3a4(7’r) = (_ 1)Ga1a3(7vr)Ga4a2(_ T,— I'). (22)

In Egs. (20) and (21), it is understood that for every unique
set of frequency/momentum or time/space values the quanti-
ties that appear in the equations are 16 X 16 matrices.

For completeness, we also note the first-order contribution
to the self-energy. For a transitionally invariant system we
have

3= (nr) = Ffl)a;aza,cazal(ﬁ 0,r=0)5,05(7).

ay,ay
(23)

The 7—0 limit for ¥ is ambiguous for a=a’ and for G
when a,=a; in the sum. In such instances the appropriate
limits are 7— 0~ for @=0 or 1 and 7—0* for =2 or 3.

We follow Serene and Hess in using Fourier transform
techniques to reduce the scaling of the FLEX calculations to
order NIn N where N is the number of unique space/time
points in the calculation.'"” We use the method of Deisz,
Hess, and Serene to improve the numerical accuracy of the
finite representation of the time/frequency domain;? the re-
sulting errors are well-controlled and are not discussed fur-
ther here. We employ the dynamical cluster approximation
(DCA) to accelerate the convergence of results as a function
of lattice size.?!?? In this formalism, a many-body calcula-
tion (using FLEX in this case) for an N;=L, X L, X L, lattice
is simplified through the use of an N.=L, XL, XL, =N,
effective dynamical cluster for estimating correlation effects.
We will note values of N, used in our calculations, but it will
not be the purpose of this manuscript to explore convergence
with N, in detail.

III. DEMONSTRATIONS

A. d-wave superconductivity in the two-dimensional repulsive
Hubbard model

The fluctuation exchange approximation applied to the
single-band Hubbard model near half-filling has been used
extensively for modeling d-wave superconductivity in the
cuprates. Some of this work is based on analysis of pairing
instabilities in the normal state,”> a procedure that yields
transition temperatures, 7., as well as the symmetry group
that provides the basis for the pair-wave function. Other
work includes explicit calculation and analysis below T.,>¢
encompassing the properties extracted from the instability
analysis and other properties such as the temperature depen-
dence of the superconducting gap function.

In the top half of Fig. 3 we show a graph of FLEX results
obtained with this algorithm for the pairing amplitude, m,,
versus temperature for a density of n=0.85 electrons per site,
U/t=4.0 where ¢ is the nearest-neighbor hopping amplitude,
i.e., t=1(Axx) and Ax is the spacing between lattice points in
the x direction (all other hopping amplitudes are set equal to
zero in this case) and using a N,=16> DCA cluster with an
underlying N,=647 lattice. A fit (dashed line) to the numeri-
cal results (open circles) provides an estimate of 7. Perform-
ing similar calculations for a range of parameters produces a
section of the phase diagram as shown in the bottom of Fig.
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FIG. 3. (Top) Pairing amplitude, m,, vs scaled temperature, T/t,
for the repulsive Hubbard model with U=4¢, a density of 0.85 elec-
trons per site and ¢ is the nearest-neighbor-hopping amplitude in the
limit that /,—0. Calculation was performed with a 16X 16 dy-
namical cluster embedded in a 64 X 64 lattice using the dynamical
cluster approximation. A fit (dashed line) to the FLEX data (circles)
is used to estimate the transition temperature 7,. (Bottom) Scaled
superconducting transition temperature, 7, versus electron density
per atomic site, n. All calculations were performed with U=4¢ and
an underlying 64 X 64 lattice. The results are consistent with those
produced by Pao and Bickers by analyzing pairing instabilities in
the normal state. Some variation is observed with respect to cluster
size in going from 4 X4 to 16X 16 clusters. Results for large clus-
ters and densities near n=1.0 are difficult to obtain on account of
singular features in FLEX calculations that make convergence slow
at low temperatures.

3. These results track well what has been obtained in previ-
ously reported FLEX calculations for the same model
parameters. For example, as noted by Pao and Bickers,> the
pairing amplitude does not have the mean-field form
m,~(T.—T)"? as in our case the exponent is closer to 0.2.
Our best estimate for 7. for n=0.85, T,./t=0.022 agrees well
with that obtained by Bickers and White?® from an instability
analysis. Finally, the T vs n trends concur with that obtained
by Pao and Bickers for U=61.4

Figure 3 also reveals a weakness in our approach in that
as the DCA cluster size gets larger it becomes increasingly
difficult for the FLEX equations to converge at low tempera-
tures in the vicinity of n=1.0 on account of numerical insta-
bilities assosciated with singularities in the ¢ matrix that are
due to (nearly) perfect nesting of the Fermi surface. This
convergence problem is less severe in an instability analysis
as the calculations in that case are done for higher tempera-
ture values, namely, 7> T,. This limitation of the algorithm
does not persist when a next-nearest-neighbor hopping term
is included in the Hamiltonian as is frequently done for this
model.
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FIG. 4. Scaled superconducting transition temperature, 7./t",
versus scaled interaction strength, |U|/(f*+|U]), for the three-
dimensional attractive Hubbard model with a density of one-
electron per site where r*=2\dr=2.8¢ is a measure of the electron
bandwidth as a function of spatial dimension d. Calculations were
performed using an N, =16 lattice, but with correlations evaluated
using N,=13 (open circles) and N.=43 (filled diamonds) clusters as
prescribed by the dynamical cluster approximation. The weak de-
pendence of T,./¢* results as a function of N,. demonstrate the small-
ness of corrections to dynamical mean-field theory, which becomes
exact in the infinite dimensional limit, at least for the parameters
and approximation scheme explored here. These results are in ex-
cellent agreement with those obtained by Freericks in the infinite
dimensional limit. (Ref. 25)

B. Superconductivity in the attractive Hubbard model

The Hubbard Hamiltonian with an attractive interaction
between up and down spin electrons provides a simple model
for even spatial symmetry (s wave) electron pairing. Freer-
icks explored the accuracy of FLEX by considering the infi-
nite dimensional limit of the Hubbard Hamiltonian where
dynamical correlations between electrons become purely
local,® greatly simplifying the analysis whether it is done
through quantum Monte Carlo or through an approximation
scheme such as FLEX.?% Freericks explicitly focused on the
charge-density wave transition that occurs in the model at
half filling, but this transition is degenerate with an s-wave
superconducting transition and, thus, his results provide a
test for this algorithm.

Following Freericks, in Fig. 4 we display results for the
transition scaled transition temperature, 7./t", versus the
scaled interaction strength |U|/(¢"+|U|) where £*=(2\d)t is
a measure of the electron bandwidth as a function of lattice
dimension, d. We use the DCA to approximate correlations
using cluster sizes of N.=13 and N,=4> and find little depen-
dence of these results on N, thus validating the use of dy-
namical mean-field theory, i.e., N.= 13, for the model param-
eters considered here. Indeed the details of this graph are in
excellent agreement with Freericks’ results for the d—
limit, including both the location and size of the maximum in
T/t

C. Search for p-wave superconductivity in the repulsive
Hubbard model at low particle density

In the limit of low density, the Hubbard model with a
repulsive interaction has a tendency to produce ferromag-
netic correlations. In turn, these correlations may drive a su-
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FIG. 5. Pairing susceptibility, x,, in the p-wave channel for the
one-band repulsive Hubbard model at n=0.3 electrons per site,
U=4t and a nearest-neighbor-hopping term ¢’ =—0.5¢. Although fer-
romagnetic correlations are strong, no transition to a p-wave super-
conducting state is observed as the temperature is lowered, in con-
currence with previous results based on an instability analysis.

perconducting transition to a state with spin-triplet orbital
p-wave pairing. While there is extensive theoretical work
with respect to this possibility, we will focus on the FLEX
results of Arita, Kurok, and Aoki?’ as a point of comparison
for our implementation of this approximation.

In their work, they include a next-nearest-neighbor hop-
ping term, ', i.e., #' =t(Axx+Ayy), to enhance the ferromag-
netic correlations that are needed to produce p-wave pairing
within FLEX. Quantum Monte Carlo simulations suggest an
optimal value of approximately ' =—0.57 for an electron den-
sity of 0.3 per atomic site.?® Their analysis of pairing insta-
bilities in the normal state nonetheless does not reveal a
strong tendency toward a p-wave pairing state, at least down
to the fairly small temperatures, 7/t~ 0.02, considered in
their study.

This approach, in which we apply a small pairing field,
hy,, and then monitor the resulting pairing response, m,,, for
instabilities, differs technically from that of Arita, Kuroki,
and Aoki, but should, in principle, produce the same quali-
tative results, although some quantitative differences are ex-
pected as particle-particle contributions to the electron self-
energy and pairing vertices were neglected in the instability
analysis. Indeed, as shown in Fig. 5 our pairing susceptibil-
ity, Xp~ 1,/ hp with hp small (namely, h,,~0.001t; smaller
values for &, do not change this ratio), is essentially flat to
the lowest temperatures for which we are able to obtain con-
verged results, 7/t~ 0.01, in concurrence with the instability
analysis results. While we do not have a diverging pairing
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response as temperature is lowered, we have verified that the
dominant pairing symmetry that emerges from our analysis is
p wave.

IV. SUMMARY AND FUTURE DIRECTIONS

We presented an algorithm for FLEX calculations for su-
perconducting states of arbitrary pairing symmetry and have
demonstrated its ability to reproduce previously obtained re-
sults for s-wave superconductivity in the attractive Hubbard
model and d- and p-wave superconductivity in the repulsive
Hubbard model. On account of the generality of the algo-
rithm, it provides a framework for FLEX studies of super-
conductivity in systems with nonsinglet pairing and systems
where there is more than one strong candidate for the pairing
symmetry.

Extensions to the multiband models, such as would be
appropriate for the pnictide superconductors, simply follow
by expanding the local operator space in the Nambu repre-
sentation from four components to 4N, components where
N, is the number of bands in the model. However, the

particle-hole such as quantities x, Y, and T that are computed
on very iteration of FLEX scale have (4N,)* components for
each time/space or frequency/momentum value. Thus, a five-
band model would lead to at least a 5*=625 factor increase
in storage and calculation of these quantities. Such a calcu-
lation is feasible, particularly if the dynamical cluster ap-
proximation is use to reduce the effective spatial scale that is
needed to perform the parts of the calculation where these
quantities appear. While FLEX calculations of normal-state
instabilities have already been performed, they point to the
possibility that more that while a type of s-wave pairing
symmetry is strongest, electron correlations make other types
of pairing feasible as well.”!° This being the case, it is espe-
cially important to perform investigations below 7. as a sec-
ond superconducting transition my occur below T, as is ob-
served in FLEX calculation of the repulsive three-
dimensional Hubbard model with tetragonal, but nearly
cubic symmetry.?
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